A Bayesian multilevel model for estimating the diet/disease relationship in a multicenter study with exposures measured with error: the EPIC study.
نویسندگان
چکیده
In a multicenter study, the overall relationship between diet and cancer risk can be broken down into: (a) within-center relationships, which reflect the relationships at the individual level in each of the centers, and (b) a between-center relationship, which captures the association between exposure and disease risk at the aggregate level. In this work, we propose the use of a Bayesian multilevel model that takes into account the within- and between-center levels of evidence, using information at the individual and aggregate level. Correction for measurement error is performed in order to correct for systematic between-center measurement error in dietary exposure, and for attenuation biases in relative risk estimates within centers. The estimation of the parameters is carried out in a Bayesian framework using Gibbs sampling. The model entails a measurement, an exposure, and a disease component. Within the European Prospective Investigation into Cancer and Nutrition (EPIC) the association between lipid intake, assessed through dietary questionnaire and 24-hour dietary recall, and breast cancer incidence was evaluated. This analysis involved 21 534 women and 334 incident breast cancer cases from the EPIC calibration study. In this study, total energy intake was positively associated with breast cancer incidence at the aggregate level, whereas no effect was observed for fat. At the individual level, height was positively related to breast cancer incidence, whereas a weaker association was observed for fat. The use of multilevel models, which constitute a very powerful approach to estimating individual vs aggregate levels of evidence should be considered in multicenter studies.
منابع مشابه
A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza
Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...
متن کاملProvide a Predictive Model to Identify People with Diabetes Using the Decision Tree
Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...
متن کاملEstimating the Available Water in the Watershed using System Dynamics Hydrological Model (Case Study: Ilam Watershed)
Hydrological models provide water managers with the available amount of water in the watershed. In this paper, we firstly developed a system dynamics model to calculate the available amount of water in the watershed. Then, we defined two scenarios one of which is the development scenario describing how land use changes can affect water availability in the watershed. Next, we divided the watersh...
متن کاملEstimating Steatosis Prevalence in Overweight and Obese Children: Comparison of Bayesian Small Area and Direct Methods
Background Often, there is no access to sufficient sample size to estimate the prevalence using the method of direct estimator in all areas. The aim of this study was to compare small area’s Bayesian method and direct method in estimating the prevalence of steatosis in obese and overweight children. Materials and Methods: In this cross-sectional study, was conducted on 150 overweight and obese ...
متن کاملتعدیل اریبی نسبت شانس حاصل از طبقهبندی نادرست مواجههها با استفاده از روشهای بیزی در بررسی عوامل محیطی مرتبط با سرطان ریه
Background & Objective: Inability to measure exact exposure in epidemiological studies is a common problem in many studies, especially cross-sectional studies. Depending on the extent of misclassification, results may be affected. Existing methods for solving this problem require a lot of time and money and it is not practical for some of the exposures. Recently, new methods have been proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 27 29 شماره
صفحات -
تاریخ انتشار 2008